WJEC (Eduqas) Physics GCSE

7.1: Current, Potential Difference and Resistance Detailed Notes

(Content in bold is for higher tier only)

Current \& Charge

Charge

Charge is a property of objects that experience a force when placed in an electric field. It is measured in coulombs (C). Electrons are negatively charged sub-atomic particles that carry current round electrical circuits.

Current

Current (I) is the flow of electrical charge in a circuit. The greater the rate of flow of charge (Q), the greater the current:

$$
Q=I t
$$

Q is charge flow in coulombs (C), I is the current in amperes (A) and t is the time in seconds (s)

In a single closed loop such as a series circuit, current has the same value at any point and can be measured using an ammeter connected in series with the component being measured.

Circuit symbol for an ammeter (adapted from studyrocket.co.uk).
The current through a component depends on both the resistance (R) of the component and the potential difference (V) across the component.

Potential Difference

Potential difference (p.d.) is also referred to as voltage and is a measure of the 'force' required to move a current around the circuit. It is measured as a change in voltage between two parts of a circuit, such as before and after a component.

Voltage is measured in parallel to a circuit using a voltmeter. The p.d. in a circuit can be increased by increasing the number of cells used.

Circuit symbol for an voltmeter (adapted from studyrocket.co.uk).

Resistance

The components of electrical circuits restrict the flow of current in a circuit, known as resistance. The units of resistance are Ohms (Ω). Current, potential difference and resistance are related and can be calculated using the equation:

$$
V=I R
$$

V is voltage in volts $(V), I$ is the current in amperes (A) and R is the resistance in ohms (Ω)

Energy \& Power

Energy

The energy transferred from chemical potential in batteries to electrical energy in wires depends on the charge stored and potential difference. This energy is then transferred to any form of useful energy in the devices they power.

$$
\begin{gathered}
E=Q V \\
E \text { is energy in joules }(\mathrm{J}) \text { and } Q \text { is charge flow in coulombs (C) }
\end{gathered}
$$

Power

Power is the energy transferred per unit time and it is directly proportional to current and voltage.

$$
\begin{aligned}
& E=P t \\
& P=I V
\end{aligned}
$$

E is energy in joules (J) and P is power in watts (W)

Power loss in a component is proportional to resistance, and to the square of the current.

$$
P=I^{2} R
$$

E is energy in joules (J) and P is power in watts (W)

Current-Voltage Characteristics

By observing the relationship between current and voltage, the I-V characteristic of a component can be analysed. This characteristic is mainly produced by any resistance in the circuit.

Measuring Resistance

Resistance of a component can be investigated by monitoring the current flow through it and potential difference across it. This is done using a variable resistor within the circuit that can change the voltage and current.

A circuit to investigate how current changes with voltage for a component (bbc.co.uk)

Current-Voltage Graphs

Taking regular measurements of voltage and current at different resistances means a current-voltage graph can be produced. If the resistance is constant, the component is described as an ohmic conductor where current is directly proportional to the potential difference.

Resistance of components such as lamps, diodes, thermistors and LDRs is not constant and changes with the current flow through it. This produces a non-linear current-voltage graph.

A filament lamp has a characteristic curve as its resistance increases as the temperature of the filament increases.

Diodes also produce characteristic curves as current only flows in one direction through it, as it has a much higher resistance in the reverse direction.

Characteristic current-voltage curves for common components (bbc.co.uk)

Thermistors and LDRs

These are two resistors with very specific current-voltage characteristics. The resistance of a thermistor reduces as the temperature increases. This feature means they are often used in temperature detectors and thermostats.

LDRs (Light Dependent Resistors) have changing resistivity depending on the light level. The greater the intensity of light, the lower the resistance. Therefore the resistance is greatest when it is dark. LDRs are often used in automatic night lights.

